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We perform calculations of the 3D finite-temperature homogeneous electron gas in the warm-
dense regime (rs ≡ (3/4πn)1/3a−1

0 = 1.0 − 40.0 and Θ ≡ T/TF = 0.0625 − 8.0) using restricted
path integral Monte Carlo. Precise energies, pair correlation functions, and structure factors are
obtained. For all densities, we find a significant discrepancy between the ground state parameterized
local density approximation and our results around TF . These results can be used as a benchmark for
developing finite-temperature density functionals, as well as input for orbital-free density function
theory formulations.

PACS numbers:

The one-component plasma, a fundamental many body
model, consists of a single species of charged particles
immersed in a rigid neutralizing background. For elec-
trons, the one-component plasma is a model of simple
metals and is often called the homogeneous electron gas
(HEG), electron gas, or jellium. At zero-temperature, it
is customary to define the natural length scale rsa0 ≡
(3/4πn)1/3 and energy scale Ry = e2/2a0, where n is
the system density. When rs, the Wigner-Seitz radius,
is small (high density) (rs → 0), the kinetic energy term
dominates and the system becomes qualitatively similar
to a non-interacting gas. At low density (rs → ∞), the
potential energy dominates and the system is predicted
to form a Wigner crystal [1]. In 3D at intermediate den-
sities, a partially polarized state is predicted to emerge
[2, 3].

Over the past few decades very accurate zero-
temperature quantum Monte Carlo (QMC) calculations
of the ground state HEG examined each of these phases
[4, 5]. In addition to determining phase boundaries, the
results of these studies have proven invaluable in the
rigorous parameterization of functionals in ground state
density functional theory (DFT) [6].

Recently there has been intense interest in extending
the success of ground-state DFT to finite-temperature
systems such as stellar, planetary interiors and other hot
dense plasmas [7–9]. However, such attempts have met
both fundamental and technical barriers when electrons
have significant correlations.

Some of the first Monte Carlo simulations explored the
phases of the classical one-component plasma [10]; note
that its equation of state depends only on a single vari-
able, the Coulomb coupling parameter Γ ≡ e2/(rskBT ).
First-order quantum mechanical effects have since been
included [11, 12]. However, the accuracy of these results
quickly deteriorates as the temperature is lowered and
quantum correlations play a greater role [13]. This break-
down is most apparent in the warm-dense regime where

both Γ and the electron degeneracy parameter Θ ≡ T/TF
are close to unity.

Finite-temperature formulations of DFT have also met
with challenges. There are two broad approaches to
building finite-temperature functionals. In one approach,
temperature effects are introduced by smearing the elec-
tronic density of states over a Fermi-Dirac distribution.
As temperature increases, an ever-increasing number of
molecular (Kohn-Sham) orbitals is required in order to
evaluate the functional, making DFT calculations com-
putationally intractable. In addition, although a useful
approximation, this approach is not exact even in the
limit of the exact ground state exchange functional as
the Kohn-Sham orbitals need have no relation to the true
excited states. A second approach is to use orbital-free
DFT where the usual Kohn-Sham orbitals are replaced
by another functional for the kinetic energy term [14, 15].
However, an a priori way to determine such a functional
has yet to materialize. Without a reliable benchmark,
orbital-free DFT is left to rely on Thomas-Fermi-like ap-
proximations which can incur errors an order of mag-
nitude larger than typical DFT errors [16]. Having ac-
curate finite-temperature energies for the 3D HEG will
help parametrize finite-temperature functionals.

In this paper, we provide accurate, first-principles ther-
modynamic data of the 3D HEG throughout the warm-
dense regime, as shown in Fig. 1, for both the fully spin-
polarized ξ = 1 and unpolarized ξ = 0 systems, where
ξ ≡ (N↑ − N↓)/(N↑ + N↓). In doing so we make firm
connections to both previous semi-classical and ground-
state studies. We utilize the Restricted Path Integral
Monte Carlo (RPIMC) method. For a complete review
of bosonic PIMC and its extension to fermions we refer
the reader to [17] and [18, 19], respectively. Here we will
only touch on parts of the method which are significant
to this study.

PIMC allows in-principle exact calculations of equilib-
rium properties of quantum systems. For fermions, how-
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ever, statistical weights of approximately equal magni-
tude and opposite sign make direct simulation computa-
tionally intractable at low temperatures. To circumvent
this difficulty, a constraint is imposed such that sampled
paths remain within the strictly positive region of a trial
density matrix; here we employ the free-electron density
matrix,

ρ0(R,R′, τ) = (4πτ/r2s)
−3N/2 exp[−

(ri − r′j)2
4τ/r2s

] (1)

where R ≡ {ri} is the set of all 3N particle coordinates
and τ ≡ β/M with M the number of imaginary time
discretizations. We expect this approximation to be best
at high temperature and at low-density when correlation
effects are weak. Specifically we compare Eq. 1 to the
Feynman-Kac formulation for the full density matrix,

ρF (R,R′, β) = Aρ0(R,R′, β)〈exp[−
∫ β

0

dτV (R(τ))]〉
(2)

where A is the anti-symmetrization operator and 〈. . . 〉
denotes an average over Brownian walks from R′ to R.
As β → 0, this average tends to unity, leaving only the
anti-symmetrized kinetic term. Thus for any potential
V (R) bounded from below, the nodes of the full density
matrix equal the nodes of the free-particle density matrix
in the high-temperature limit.

Furthermore, we expect free-particle nodes to be ac-
curate for a homogeneous system, such as the electron
gas, where translational symmetry constrains the possi-
ble nodal surfaces [20]. Nevertheless further accounting
of this approximation will be made through connection to
prior semi-classical and ground-state simulations as well
as exact evaluation of the unrestricted density matrix at
higher temperatures.

We utilize the pair product approximation to write
the many-body density matrix as a product of high-
temperature two-body density matrices [17]. To account
for the long-range nature of the Coulomb interaction, we
split the density matrix into a short-range and long-range
piece. Each short-range two-body density matrix is ex-
actly solved at an even higher temperature, and then
squared down to the temperature of interest τ−1. The
long-range piece is then included via Ewald summation.

Rebuilding the many-body density matrix out of such
two-body density matrices comes with an error that
scales as ∼ τ3/r2s . A more dominate form of time step
error originates from paths which cross the nodal con-
straint in a time less than τ . To help alleviate this effect,
we use an image action to discourage paths from get-
ting too close to nodes. An example of τ convergence
is given in Supplementary Material along with the time
steps used at all densities for both the fully spin-polarized
(ξ = 1) and unpolarized (ξ = 0) systems.

For the fully spin-polarized system, we simulated N =
33 electrons, while for the unpolarized system, we sim-
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FIG. 1: (color online) Temperature-Density points considered
in the current study (dots). Several values of the Coulomb
coupling parameter Γ (dashed lines) and the electron degen-
eracy parameter Θ (dotted lines) are also shown.

ulated N = 66 electrons. Both N ’s are so-called magic
numbers which completely fill a fixed number of bands for
the free Fermi gas, helping to alleviate shell effects arising
from a sharp Fermi surface. To further account for the
finite-size of the simulation cell, we use the exact analytic
correction for the ground-state homogeneous electron gas
[21]. At intermediate and high densities, a second order
correction to the kinetic energy is necessary [22], giving,

∆TN =
1

N
(
ωp
2

+
5.264

πr2s(2N)1/3
[(1 + ξ)2/3 + (1− ξ)2/3])

∆VN =
ωp
2N

, ∆EN = ∆VN + ∆TN

where ωp ≡
√

3
r3s

is the random phase approximation

(RPA) plasmon frequency. At finite-temperature this
correction is multiplied by tanh(βωp). Since it relies on
the validity of the RPA at long-wavelength, this correc-
tion should still be accurate provided the small k be-
havior of the static structure factor behaves as in the
RPA. In Fig. 2, we verify this feature for the unpolar-
ized state at rs = 1.0 and rs = 10.0. Note that for ξ = 0,
S(k) = S↑↑(k) + S↑↓(k).

An additional error comes from the sampling error of
the Monte Carlo algorithm itself. This error, determined
through hierarchical binning [23], can be controlled by
simply gathering more statistics through sampling addi-
tional configurations. For most points, we were able to
run long enough to have statistical errors on the same
order as the other errors. However, for the highest den-
sity points, statistical errors are an order of magnitude
higher than time step errors.

We have calculated energies, pair correlation functions,
and structure factors of the 3D HEG for densities ranging
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FIG. 2: (color online) Static structure factors for rs = 1.0
and rs = 10.0 in the unpolarized state. At Θ = 0.0 we plot
the ground state structure factor from Ref. [24]. Also shown
is the small k part of SDH(k) at Θ = 8.0, see Eq. 3.

from rs = 1.0 to 40.0 and temperatures ranging from
Θ = 0.0625 to 8.0 as shown in Fig. 1. At each density, we
observe a smooth convergence to previous semi-classical
studies [10] at high temperature.

In Fig. 3 we plot the total excess energy (Etot −
E0)/E0) for the polarized system at all temperatures
with rs = 4.0 and 40.0. At the highest temperatures, our
results match well with the purely classical Monte Carlo
results of Ref. [10] (solid line). For a few select points,
we have performed the much more time-consuming but
more accurate, signful PIMC simulation (squares). These
points which are essentially exact, i.e. without possible
nodal error, match well with fixed-node results. Finally,
we know from Fermi liquid theory the low-temperature
gas should have a linear form for the heat capacity, and
therefore a quadratic form for the internal energy. Thus
for each density we fit the low-temperature points to a
quadratic function and extrapolate to 0K. Fig. 3 shows
the extrapolated results (dotted line) match well with
the zero-temperature QMC results of Ceperley-Alder [4]
(dashed line).

Fig. 2 shows the calculated structure factors for the
unpolarized state at rs = 1.0 and rs = 10.0. At all den-
sities and polarizations, we see a smooth convergence to
both the ground-state and classical Debye-Huckel limits.
Zero-temperature curves are generated through an ana-
lytic fit to previous QMC data [24], while Debye-Huckel
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FIG. 3: (color online) Excess energies for rs = 4.0 (top) and
rs = 40.0 (bottom) for the polarized state. For both densities,
the high temperature results fall smoothly on top of previous
Monte Carlo energies for the classical electron gas [10] (solid
line). Differences from the classical coulomb gas occur for
Θ < 2.0 for rs = 4.0 and Θ < 4.0 for rs = 40.0. Simulations
with the Fermion sign (squares) confirm the fixed-node results
at Θ = 1.0 and 8.0. The zero-temperature limit (dotted line)
smoothly extrapolates to the ground-state QMC results of
Ceperley-Alder [4] (dashed line).

curves are generated using [26],

SDH(k) =
k2

k2 + 3Γ
(3)

Fig. 4 shows the pair correlation functions for the same
systems. Again, we see a convergence to analytic ground-
state curves. The small r behavior slightly deviates for
rs = 1.0, but this is due to the poor quality of small r
QMC data which was used to create the analytic fit [26].
We also plot the Debye-Huckel pair correlation function
given by,

gDH(r) = exp[−rθ exp(−r
√

3/θ)] (4)

where θ ≡ rsT
2 . As was noted in Ref. [26], convergence

of g(r) to the Debye-Huckel limit is slower than for the
corresponding S(k).

Through this comparison of our results against exist-
ing numerical and analytical data, we conclude the free-
particle nodal approximation performs well for the den-
sities studied. Further investigation is needed at even
smaller values of rs and lower temperatures in order to
determine precisely where this approximation begins to
fail. Such studies will necessarily require algorithmic im-
provements, however, because of difficulty in sampling
paths at high density and low temperature [20].
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FIG. 4: (color online) Pair correlation functions for rs = 1.0
and rs = 10.0 in the unpolarized state. At Θ = 0.0 is shown
the ground state correlation function from Ref. [24]. Devia-
tion from RPIMC is seen at small r, but this is most likely
due to poor ground-state QMC data [25]. Also shown is the
small r part of gDH(r) at Θ = 8.0, see Eq. 4. The Debye-
Huckel limit is not yet reached at Θ = 8.0 for the lower density
rs = 10.0.

Finally, we have evaluated the exchange-correlation en-
ergy Exc, an essential quantity in any DFT formulation,
defined

Exc(T ) ≡ Etot(T )− E0(T ) (5)

where E0 is the kinetic energy of a free Fermi gas at
temperature T . As is customary, we further break up
Exc into exchange and correlation parts,

Exc(T ) = Ex(T ) + Ec(T ) (6)

where Ex(T ) is the Hartree-Fock exchange energy for a
free Fermi gas at temperature T [27].

By calculating Etot(T ) through RPIMC simulations we
were able to determine Ec(T ) at all studied densities for
both the fully spin-polarized and unpolarized states. As
one can see in Fig. 5, correlation effects increase both
with density (smaller rs) and temperature up to a tem-
perature above the Fermi temperature TF . Above this
temperature, the electron gas begins to be less correlated.
This represents the point at which electron screening
is a dominant effect, the interaction becomes effectively
short-ranged, and the Debye-approximation becomes rel-
atively accurate [26]. As the density increases, the value
of Θ at which this occurs decreases. At rs = 1.0 the max-
imal effect of interactions occurs very near TF , Θ = 1.
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FIG. 5: (color online) Correlation energy ec(T ) of the 3D
HEG at several temperatures and densities for the unpolar-
ized (top) and fully spin-polarized (bottom) states. Exact
(signful) calculations (squares) confirm the fixed-node results
where possible (Θ = 8.0 for ξ = 0 and Θ = 4.0, 8.0 for ξ = 1).
For comparison, we plot the Θ = 0.0 correlation energy used
in local density approximation DFT calculations.

Most notably, we see a departure from the Θ = 0.0
correlation energy used ubiquitously in both ground state
and finite-temperature local density approximation DFT
calculations. This discrepancy is significant throughout
the warm-dense regime, calling into question the use of
ground state correlation functionals at such temperatures
and densities.

In conclusion we have used RPIMC with free-particle
nodes to calculate energies, pair correlation factors,
and structure factors for the 3D HEG throughout the
warm-dense regime. Systematic errors, including finite-
size effects, time-step, and statistical fluctuations, are
controlled for. Through cross-validation with previous
ground-state and classical MC and exact finite tempera-
ture calculations, we estimate that bias from the use of
the free particle density matrix in the constraint is small
for the density/temperature points simulated. This does
not exclude the possibility of fixed-node error at higher
densities and lower temperatures. In future work we will
quantify this error by finding better nodal structures and
doing calculations without such uncontrolled approxima-
tions.

All data can be found both in the Supplementary Ma-
terial at [URL will be inserted by publisher] and a repos-
itory hosted at http://github.com/3dheg/3DHEG.
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